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A phase field method is developed to investigate the morphological evolution of a vesicle in
an electric field, taking into account coupled mechanical and electric effects such as bend-
ing, osmotic pressure, surface tension, flexoelectricity, and dielectricity of the membrane.
The energy of the system is formulated in terms of a continuous phase field variable and
the electric potential. The governing equations of the phase field and the electric field
are solved using the Galerkin weighted residual approach. The validation and robustness
of the algorithm are verified by direct comparisons of the obtained numerical solutions
with relevant experimental results. The morphological evolution of an axisymmetric vesi-
cle under an electric field is studied in detail. The results demonstrate that the present
method can simulate complex morphological evolutions of vesicles under coupled
mechanical–electrical fields.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Cell membrane plays a crucial role in many biological processes owing to their unique physical properties [1,2]. Cells can
sense their environment and respond to external stimuli [3,4]. Such biological processes as growth, hybridization, migration,
proliferation and differentiation of cells are closely related to the electrophysiological properties of cell membrane [3]. Var-
ious phenomena including electroporation, electrofusion, electrophoresis, and electro-deformation have been widely uti-
lized in biophysical, biochemical and biomechanical studies of cells such as transfer/delivery of genes, proteins,
antibodies or drugs into cells, separation of different kinds of biological macromolecules or cells, and measurement of dif-
ferent physical properties of the cell membrane [1,5–12].

In the past several years, considerable effort has been directed towards understanding and predicting the complicated
morphological evolution of vesicles in an electric environment [13–19]. For example, Riske and Dimova [16] predicted a pro-
late-to-oblate transition in an electric field, depending on the ratio between the conductivity coefficients of the inner and
outer electrolytes. Besides the electrical field, various effects from the fluid environment around the vesicle, such as the os-
motic pressure, surface tension [1,20,21] and shear flow [22–28], also significantly influence the static and dynamic
. All rights reserved.
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behaviors of the vesicle. Due to the intrinsic complexity of mechanical–electrical coupling and nonlinear geometric deforma-
tion of cells, existing theoretical studies have been largely confined to relatively simple configurations (e.g., infinite planes,
spheres and ellipses). Recently, Gao et al. [19] developed a more general liquid crystal model for vesicles subjected to arbi-
trary electric fields, taking into account such effects as elastic bending, osmotic pressure, surface tension, flexoelectricity,
dielectricity, and Maxwell electric pressure of the membrane.

Various numerical methods have been developed to investigate vesicle behaviors under mechanical loading, e.g., finite
difference method [20] and finite element method [29–31]. In the presence of an electric field, the behavior of vesicles
can become significantly more complicated. Accounting for the Maxwell pressure on the inner and outer sides of the mem-
brane, Hyuga et al. [32,33] developed a semi-analytical perturbation method to calculate the static and dynamic deformation
of conductive vesicles. However, this method seems to be limited to problems with weak nonlinearity. A boundary integral
approach was adopted by Fan and Fedorov [34] to study the interaction between an AFM tip and a biomembrane in a dilute
electrolyte solution. However, this type of methods does not allow for a large topological change and their applications are
limited to situations where the governing equations in the bulk phase are linear [35]. The level set method [36,37] and arbi-
trary Lagrange–Euler method (ALE) [38], which have been widely used in simulations of multiphase flows, dynamic bubbles
and drops, can also be used to simulate the morphological evolution of vesicles. However, the level set method often faces
difficulties in the renormalization procedure, while the mesh mapping, configuration changing and refinement procedure in
the ALE strategy can compromise efficiency and accuracy, especially for strongly nonlinear problems like those studied in the
present paper.

The phase field method has provided a powerful tool to solve moving boundary problems involving coupled physical
fields (e.g., electric, magnetic, fluidic, and chemical fields). This method is based on a phase field which is assumed to be con-
tinuous over boundaries and has the physical meaning of an order parameter. The energy of the system is expressed in terms
of the phase field variable, and the morphological evolution can be described without explicitly tracking the boundary. The
phase field method has some advantages in dealing with moving boundaries, large deformation, morphological singularity
and energy dissipation, and it can be used to simulate complicated microstructure evolution (e.g., solidification, phase trans-
formation, grain growth and domain evolution in thin films) [39]. Recently, Biben and Misbah [40] proposed a phase field
model to investigate the tumbling of vesicles under shear flow, and they also extended this approach to three-dimensional
vesicle dynamics [35]. Du et al. [41] developed a phase field method to systematically analyze the morphological evolution of
vesicles. A similar procedure was developed by Campelo and Hernandez-Machado [42] to simulate the dynamic and station-
ary shapes of vesicles. Du et al. [41] and Campelo and Hernandez-Machado [42] made use of finite difference and spectrum
discretization algorithms, respectively. More recently, Du et al. developed a mixed finite element method to study the equi-
librium configuration of vesicle membrane [43] and the dynamics of vesicle membranes in incompressible viscous fluids
[44]. They also developed an adaptive FEM approach [45] for handling complex shape and topological changes. However,
the electric effects have not been addressed in the previously studies.

In this paper, a phase field model, based on the liquid crystal model of Gao et al. [19], is developed to investigate the mor-
phological evolution of vesicles under arbitrary mechanical and electric fields. We will use the finite element method to dis-
cretize the phase field variable, which has certain advantages in treating inhomogeneous material properties as well as
complex material interfaces and topology. We will examine in some detail the effects of mechanical–electric coupling, inner
and outer electrolytes, flexoelectricity and dielectricity on the morphological evolution of a vesicle and compare the numer-
ical results to relevant experiments.
2. Liquid crystal model of vesicles under mechanical and electric fields

Experimental observations have demonstrated that cell membranes are constructed based on the general principles of
liquid crystal lipid bilayers [9,46]. The elastic theory of liquid crystal biomembranes has been successfully applied to study
the morphological change, adhesion, and some other related problems of cell membranes [47–50]. However, there is surpris-
ingly little investigation on the effect of flexoelectricity on the behavior of cell membranes. When subjected to strong electric
pulses, some unusual deformations of vesicles changing among disc-, square-, and tube-like shapes have been experimen-
tally observed. These phenomena cannot be explained by a liquid crystal model that disregards the electric conductivity of
the cell membrane and the electrolyte. In response to recent advances in experimental observations, we proposed a more
general electromechanical liquid crystal model of cell membranes based on Eringen’s micropolar theory [51]. The model ac-
counts for contributions of elastic bending, osmotic pressure, surface tension, flexoelectric and dielectric effects under var-
ious types of mechanical and electrical fields.

In this section, the liquid crystal model of vesicles under mechanical and electric fields [19] is briefly reviewed.
Consider a quasi-static configuration of a dielectric lipid vesicle in an electric field, the Helmholtz free energy of the sys-

tem can be expressed as
F ¼ Fbm þ Ffm þ Fdm þ Fde; ð1Þ
where Fbm; F fm, and Fdm are the elastic bending energy, the flexoelectric energy, and the dielectric energy of the membrane,
respectively, and Fde is the dielectric energy of the electrolyte.

According to Helfrich [52], the elastic bending energy is given by
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Fbm ¼
Z

C

1
2

kð2H þ c0Þ2 þ kkK
� �

dA; ð2Þ
where C denotes the surface of the vesicle, k and kk are elastic constants, H is the mean curvature, K is the Gauss curvature,
and c0 is the spontaneous curvature.

The flexoelectric energy Ffm associated with the electroelastic coupling effects of the membrane is written as [21]
Ffm ¼ �
Z

C

Z d

0
Pfm � Edr dA; ð3Þ
where d is the thickness of the membrane and E is the electric field intensity. The polarization Pfm caused by bending is given
as
Pfm ¼ �e11ðr � nÞn; ð4Þ
where e11 is the flexoelectric coefficient and n is the unit normal vector of the membrane surface.
The dielectric energy is expressed as
Fdm ¼ �
1
2

Z
C

Z d

0
Dem � Edr dA; ð5Þ
where the electric displacement Dem can be decomposed as
Dem ¼ ðe? þ ekÞEnnþ e?EuY;u þ e?EvY;v ; ð6Þ
ek and e? denoting the anisotropic dielectric constants along and normal to the n direction [53], respectively. The parame-
terized function Y ¼ Yðu;vÞ describes the membrane surface in terms of two variables u and v, as shown in Fig. 1, which can
take different forms in different coordinates. The surface parameters u and v are properly defined such that the axes along Y;u

and Y;v are orthogonal; Eu and Ev are the magnitudes of the electric field in the Y;u and Y;v directions, respectively. We further
define guu ¼ Y;u � Y;u and gvv ¼ Y;v � Y;v to be used in the following formulations. The normal vector n and the two tangential
vectors Y;u and Y;v constitute a local orthogonal coordinate system.

The dielectric energy of an electrolyte is expressed as
Fde ¼ �
Z

X

1
2
erjr/j2 dV ; ð7Þ
where er denotes the dielectric constant of the electrolyte and / the electric potential.
We define the following energy functional [19]
F0 ¼ Fbm þ Ffm þ Fdm þ Fde þ DpðV � V0Þ þ cðA� A0Þ; ð8Þ
Schematic of a vesicle described by a parameterized shape function Y ¼ Yðu;vÞ with a local orthogonal coordinate system ðY;u;Y;v ;nÞ and a small
variation dYðu;vÞn.
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where Dp ¼ pout � pin is the osmotic pressure, c is the surface tension of the membrane, V0 and A0 denote the initial volume
and surface area of the vesicle before loading, and V and A denote the volume and surface area of the deformed vesicle under
loading, respectively. pin and pout are the pressure in and out of the vesicle, respectively. Both Dp and c, which are also re-
ferred to as Lagrange multipliers from the viewpoint of mathematics [21], are assumed to remain constant during the defor-
mation of the vesicle. The associated constraint equations will be discussed in Section 3. The last two terms in Eq. (8) stand
for the work done by the osmotic pressure and by the surface tension due to changes of the vesicle volume and surface area,
respectively.

From the first-variational condition dF ¼ 0, the Euler–Lagrange equation of shape evolution for a vesicle under mechan-
ical and electric fields is derived as [19]
r2 2kH þ kc0 � e11
R d

0 En dr
� �

þ f ¼ 0;

f ¼ kð2H þ c0Þð2H2 � c0H � 2KÞ þ Dp� 2cH

þH
R d

0 ½ðe? þ ekÞE2
n þ e?guuE2

u þ e?gvvE2
v �dr

þ2e11K
R d

0 En dr þ eiðE2
in � 1=2E2

i Þ � eoðE2
on � 1=2E2

oÞ:

8>>>>>><>>>>>>:
ð9Þ
This equation has accounted for coupling between electric and mechanical energy terms, and it will be used to investigate
the behavior of a vesicle under electric fields.

For a static electric field, one has
r � ðrr/Þ ¼ 0; ð10Þ
where the conductivity r takes the value r ¼ ro in the outer electrolyte, r ¼ ri in the inner electrolyte, and r ¼ rm in the
membrane. The electric boundary conditions are
/m ¼ /o; rm
o/m
on ¼ ro

o/o
on ; on Com;

/m ¼ /i; rm
o/m
on ¼ ri

o/i
on ; on Cim;

/ojr!1 ¼ �E0z;

/ojr!0 ¼ 0;

8>>>><>>>>: ð11Þ
where Com and Cim denote the outer and the inner boundaries of the membrane, respectively.
In principle, the morphology of a vesicle under an electric field can be determined by simultaneously solving the shape

equation (9) and the electric field equation (10), in conjunction with the boundary conditions in (11). This problem is highly
nonlinear and has moving boundaries. In the next section, we will construct an efficient phase field method to solve these
equations.
3. Phase field formulation

3.1. Phase field variable

Following Du et al. [41], we adopt the following phase function
CðxÞ ¼ f
diðxÞffiffiffi

2
p

b

� �
¼ tanh

diðxÞffiffiffi
2
p

b

� �
; ð12Þ
where b denotes the thickness of an interface. The parameter b equals to zero for a theoretically sharp interface, but is gen-
erally taken to be a small value in numerical simulations. The function diðxÞ is a signed distance function [36] satisfying
diðxÞ ¼ 0 for x 2 C on the boundary C; diðxÞ < 0 for x 2 X inside the domain X; and diðxÞ > 0 for x R ðX [ CÞ outside the do-
main X. It is also noted that rdiðxÞ ¼ n, where n is the outward unit vector normal to the interface C.

From the relations f 0 ¼ 1� f 2; f 00 ¼ �2f ð1� f 2Þ and rCðxÞ ¼ f 0 rdiðxÞffiffi
2
p

b
, the unit vector n is expressed as
n ¼ rdiðxÞ ¼
ffiffiffi
2
p

b
f 0
rC ¼

ffiffiffi
2
p

b

1� C2rC: ð13Þ
From r2CðxÞ ¼ f 00 ½rdiðxÞ�2

2b2 þ f 0 r
2diðxÞffiffi

2
p

b
and ½rdiðxÞ�2 ¼ n � n ¼ 1, one has
r � n ¼ r2diðxÞ ¼
ffiffiffi
2
p

b
f 0

r2C � f 0

2b2

� �
¼

ffiffiffi
2
p

b

ð1� C2Þ
r2C þ 1

b2 Cð1� C2Þ
� �

: ð14Þ
The mean curvature H is expressed in terms of the phase field variable C as
H ¼ �1
2
r2diðxÞ ¼ �

ffiffiffi
2
p

b

2ð1� C2Þ
r2C þ 1

b2 Cð1� C2Þ
� �

: ð15Þ
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3.2. Free energy and shape equation in terms of the phase field variable

The phase equation f ðxÞ in Eq. (12) satisfies the following relations [54]:
f 0ðxÞ ¼ 1� tanh2ðxÞ ¼ sech2 xð Þ; ð16ÞZ þ1

�1
1� f 2 sffiffiffi

2
p

b

� �� �2

ds ¼
Z þ1

�1
sech4 sffiffiffi

2
p

b

� �
ds ¼ 4

ffiffiffi
2
p

b
3

for b > 0; ð17Þ

lim
s!1

f
sffiffiffi
2
p

b

� �
s ¼ lim

s!1
sech4 sffiffiffi

2
p

b

� �
s ¼ 0: ð18Þ
Using Eqs. (12), (13), (15) and (17) and considering the small membrane thickness d as a constant, the energies in Eqs. (2),
(3), (5) and (7) will be reformulated in terms of the phase field variable C.

First, the bending energy Fbm in Eq. (2) becomes
Fbm ¼
Z

C

k
2
ð2H þ c0Þ2 dA � 3k

4
ffiffiffi
2
p

b

Z
X1

br2C þ 1
b

C �
ffiffiffi
2
p

2
c0

 !
ð1� C2Þ

" #2

dV ; ð19Þ
where X1 includes the membrane and the electrolyte domain. Using the relation E ¼ �r/, the flexoelectric energy in Eq. (3)
can be re-expressed as
Ffm ¼ �2e11

Z
C

H
Z d

0
En dr dA ¼ �2e11d

Z
C

HE � ndA � �3e11d

2
ffiffiffi
2
p

Z
X1

br2C þ 1
b

Cð1� C2Þ
� �

ðr/ÞðrCÞdV : ð20Þ
Similarly, the dielectric energy of the membrane in Eq. (5) can be rewritten as
Fdm ¼ �
Z

C

1
2
em

Z d

0
jr/j2 dr dA ¼ �

Z
C

1
2
emdjr/j2 dA � � 3d

8
ffiffiffi
2
p

b

Z
X1

emð1� C2Þ2jr/j2 dV : ð21Þ
From Eq. (13) and using the relation n � n ¼ 1, we have
ð1� C2Þ2 ¼ 2b2jrCj2: ð22Þ
Then the dielectric energy in Eq. (21) becomes
Fdm � �
3db

4
ffiffiffi
2
p

Z
X1

emjrCj2jr/j2 dV : ð23Þ
The dielectric energy of the electrolyte in Eq. (7) is reformulated in terms of the phase variable C as
Fde ¼ �
Z

X1

1
2
erðCÞjr/j2 dV ; ð24Þ
where erðCÞ ¼ 1
2 eið1� CÞ þ 1

2 eoð1þ CÞ.
Using the phase field variable, the vesicle volume and the interface area of the deformed vesicle are expressed as
V ¼ 1
2

Z
X1

ð1� CÞdV ; ð25Þ

A ¼
Z

C
dA � 3

4
ffiffiffi
2
p

b

Z
X1

ð1� C2Þ2 dV ¼ 3b

2
ffiffiffi
2
p

Z
X1

jrCj2 dV : ð26Þ
Finally, the energy functional in Eq. (8) is recast as
F ¼ Fbm þ Ffm þ Fdm þ Fde þ Dp
Z

X1

L1 dV þ c
Z

X1

L2 dV ; ð27Þ
where
L1 ¼
1
2
ð1� CÞ � V0

V1
; L2 ¼

3b

2
ffiffiffi
2
p jrCj2 � A0

V1
; ð28Þ
V1 ¼
R

X dV being the total volume of the calculation domain. The shape equation is determined by minimizing F with respect
to C, i.e.,
dFðCÞ
dC

¼ 0: ð29Þ
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The steepest decent approach [55] is adopted to solve the phase field equation (29):
oC
o t
¼ � dFðCÞ

dC
; ð30Þ
where
dFðCÞ
dC

¼ oF
oC
�r � oF

oðrCÞ þ r
2 oF

oðr2CÞ
: ð31Þ
Finally, the phase field equation for the morphology of vesicle in an electric field is derived as
oC
ot þr

2P �r � F2 þ F1 ¼ 0;

P ¼ a3r2C þ b3 � rC þ c3;

(
ð32Þ
where
F1 ¼
oF
oC
¼ P

b2 ð1� 3C2 þ C
ffiffiffi
2
p

c0bÞ þ 3
2

e11d0c0CðrC � r/Þ � Dp
2
þ 1

4
ðei � eoÞðr/Þ2;

F2 ¼
oF

oðrCÞ

¼ � e11d0

k
Pr/þ 3

4
e11d0c0ðC2 � 1Þr/

þ 3
ffiffiffi
2
p

2
bc� 3

ffiffiffi
2
p

d0b
4k

ðe2
11d0 þ emkÞðr/Þ2

" #
rC; ð33Þ

a3 ¼
3
ffiffiffi
2
p

4
kb; b3 ¼ �

3
ffiffiffi
2
p

4
e11d0br/;

c3 ¼
3
ffiffiffi
2
p

k
8b
ð�2C þ

ffiffiffi
2
p

c0bÞð�1þ C2Þ:
3.3. Constraint conditions

The two equations in (32) contain five independent variables, namely, the phase field variable C, the intermediate variable
P, the electric potential /, and the osmotic pressure Dp and the surface tension c. Therefore, three more constraint equations
are needed, which are given from the governing equation of the electric field and the constraint conditions of the volume and
area of the vesicle. In the present paper, we assume that the surface area of the vesicle does not change during deformation,
but its volume may vary.

The first complementary equation is the steady electric field equation (10), which is recast in terms of the phase field var-
iable C as
r � ðrrr/Þ ¼ 0; ð34Þ
where
rrðCÞ ¼
1
2
rið1þ CÞ þ rmð1þ CÞð1� CÞ þ 1

2
roð1� CÞ: ð35Þ
Since the conductivity of the vesicle rm is generally much smaller than those of the electrolytes ro and ri , there exist dis-
continuities or steep jumps of the conductivity coefficients across the inner and outer interfaces. Eq. (35) cannot well de-
scribe the variation of the conductivity across the membrane–electrolyte interfaces. In our simulations, Eq. (35) is
replaced by the following modified interpolation function
r ¼ ri

4
ð1� CÞ2C8 þ rm

4
ð1� CÞ2ð1þ CÞ2 þ ro

4
ð1þ CÞ2C8: ð36Þ
The multiplier penalty method [56] is adopted to introduce the constraint conditions of the volume and surface area of the
deformed vesicle. Thereby, we define a modified energy functional by adding a power penalty term with a parameter c1 into
Eq. (27):
F1 ¼ Fbm þ Ffm þ Fdm þ Fde þ Dp
Z

X1

L1 dV þ c
Z

X1

L2 dV þ c1

2

Z
X1

L2
1 dV : ð37Þ
Minimization of F1 with respect to the phase field variable C yields the first complementary equation
DpA1 þ cB1 þ C1 þ c1D1 ¼ 0; ð38Þ
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where A1;B1;C1, and D1 are given as
A1 ¼
Z

X1

dL1

dC
dV ¼ �1

2

Z
X1

dV ;

B1 ¼
Z

X1

dL2

dC
dV ¼ �3

ffiffiffi
2
p

b
2

Z
X1

r2C dV ;

C1 ¼
Z

X1

dðFbm þ Ffm þ Fdm þ FdeÞ
dC

dV ¼
Z

X1

ðr2P �r � eF2 þ eF 1ÞdV ;

D1 ¼
1
2

Z
X1

dL2
1

dC
dV ¼ 1

2

Z
X1

C � 1
2
þ V0

V1

� �
dV ;

ð39Þ
with
eF2 ¼ �
e11d0

k
Pr/þ 3

4
e11d0c0ðC2 � 1Þr/

� 3
ffiffiffi
2
p

d0b
4k

ðe2
11d0 þ emkÞðr/Þ2rC;

eF 1 ¼
P

b2 ð1� 3C2 þ C
ffiffiffi
2
p

c0bÞ

þ 3
2

e11d0c0CðrC � r/Þ þ 1
4
ðei � eoÞðr/Þ2:
Furthermore, the constant surface area of the vesicle requires
Z
X1

dL2

dt
dV ¼

Z
X1

dL2

dC
oC
ot

dV ¼ 0: ð40Þ
Another functional is chosen as
F2 ¼ Fbm þ Ffm þ Fdm þ Fde þ Dp
Z

X1

L1 dV þ c
Z

X1

L2dV þ c2

2

Z
X1

L2
2 dV ; ð41Þ
where c2 is a penalty parameter for constraining the surface area of the vesicle. By the standard gradient flow approach, we have
oC
ot
¼ � dF2

dC
: ð42Þ
Substitution of Eq. (42) into (40) leads to the second complementary equation
Z
X1

dL2

dC
dF2

dC
dV ¼ DpA2 þ cB2 þ C2 þ c2D2 ¼ 0; ð43Þ
where A2;B2;C2, and D2 are given as
A2 ¼
Z

X1

dL2

dC
dL1

dC
dV ¼ 3

ffiffiffi
2
p

b
4

Z
X1

r2C dV ;

B2 ¼
Z

X1

dL2

dC

� �2

dV ¼ 9
2

b2
Z

X1

ðr2CÞ2 dV ;

C2 ¼
Z

X1

dL2

dC
dðF 0bm þ F 0fm þ F 0dm þ F 0deÞ

dC
dV

¼ �3
ffiffiffi
2
p

b
2

Z
X1

ðr2P �r � eF2 þ eF 1Þr2C dV ; ð44Þ

D2 ¼
1
2

Z
X1

d
L2

dC
d
L

2

2
dC dV

¼ 9
ffiffiffi
2
p

b2

8

Z
X1

9bðrCÞ2 � 2
ffiffiffi
2
p

A0

V1

" #
C � 1

2
þ V0

V1

� �
ðr2CÞ2 dV :
Eqs. (32), (34), (38) and (43) provide all the equations of the phase field approach for simulating the shape evolution of ves-
icles under mechanical and electric fields.
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4. Finite element discretization of the phase field formulation

Now the strong formulation of the phase field Eqs. (32) and (34) is transformed into a weak form for the convenience of
finite element discretization. Using the Galerkin weighted residual approach [57], the weak forms of these equations are
Z

X1

½�rC � rPtest þ ðb3 � rC þ c3 � PÞPtest=a3�dV ¼ 0;

Z
X1

oC
ot

Ctest dV þ
Z

X1

½�ðrPÞ � ðrCtestÞ þ F2 � rCtest þ F1Ctest�dV ¼ 0;Z
X1

rrðr/Þ � ðr/testÞdV ¼ 0;

ð45Þ
where Ctest; Ptest, and /test are the test functions of the variable C; P, and /, respectively. Their discretized forms are
C ¼ NTC; Ctest ¼ NTC�;

P ¼ NTP; Ptest ¼ NTP�;

/ ¼ NT
u; /test ¼ NT

u�;

ð46Þ
where N is the shape function. The matrixes C;P, and u denote the generalized displacements of the variables C; P, and /; and
C�;P�, and u� denote the generalized displacements of the test functions Ctest; Ptest, and /test, respectively. Using the second-
order Lagrange element discretization in space and taking the variation with respect to C�;P� and u�, Eq. (45) is derived as
KaCþ KbðuÞCþ KcðCÞ þ KdP ¼ 0;

KaPþ KeðC;uÞ þM
oC
ot
¼ 0;

Kf ðCÞu ¼ 0;

ð47Þ
where the coefficient matrixes are
Kaij ¼ �
Z

X1

ðrNiÞTrNj dV ;

KbijðuÞ ¼
1
a3

Z
X1

ðrNiÞTb3ðuÞNj dV ;

KcijðCÞ ¼
1
a3

Z
X1

Ni½c3ðCÞ�j dV ;

Kdij ¼ �
1
a3

Z
X1

NiNj dV ;

KeijðC;uÞ ¼
Z

X1

ðrNiÞT½F2ðC; uÞ�j dV ;

K f ijðCÞ ¼
Z

X1

ðrNiÞTrNjrrðCÞdV ; Mij ¼
Z

X1

NiNj dV :

ð48Þ
Here, i and j denote the node numbers.
Moreover, by using Eq. (47), the constraint conditions (38) and (43) can be reformulated into nonlinear algebraic forms. In

this way, the phase field problem is transformed into solving a system of nonlinear equations based on the discretized finite
elements.
5. Examples and discussions

5.1. Computation model

For illustration, the phase field method described above is employed to simulate the morphological evolution of an ini-
tially spherical vesicle placed in the center of the space between two parallel and penny-shaped disk electrodes, as shown in
Fig. 2. For such an axisymmetrical problem, the differential and integral operators in the cylindrical coordinate system are
expressed as



Fig. 2. An axisymmetric vesicle–electrolyte–electrode system subjected to an approximately uniform electric field.
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rf ¼ of
or

nr þ
of
oz

nz;

jrf j2 ¼ of
or

� �2

þ of
oz

� �2

;

r2f ¼ o2f
or2 þ

o2f
oz2 þ

1
r

of
or
;Z

X
gðxÞdV ¼ 2p

Z Z
gðr; zÞr dr dz;

ð49Þ
where f is an arbitrary function, gðxÞ is an arbitrary integrand, the coordinate z is along the axisymmetric axis, and r is the
radial coordinate.

In our simulations, the initial radius and the membrane thickness of the vesicle are taken to be R0 ¼ 10 lm and d0 ¼ 5 nm,
respectively. In order to rule out the boundary effects, we set the diameter and distance of the two circular electrodes as
W ¼ L ¼ 6R0 ¼ 60 lm. Specify a positive electric potential / ¼ /0 > 0 on the bottom electrode and / ¼ �/0 on the top. In
this case, the vesicle is exposed to an approximately uniform electric field E0 ¼ 2/0=L. The insulation condition n � r/ ¼ 0
is assumed on the side boundary of the axisymmetric model. By virtue of the axisymmetry of the problem, only half of
the axial section plane of the model is calculated. The initial condition of the electric potential is /0 ¼ 0 at t ¼ 0. The Dirichlet
boundary condition C ¼ 1 and P ¼ 0 are used throughout the boundary of the model. The initial conditions of the phase field
C and P are taken as
C0 ¼ tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� R0ffiffiffi
2
p

b

 !
;

P0 ¼
3k

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� R0ffiffiffi
2
p

b

 !
� 1

" #
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
c0 � 2Þ:

ð50Þ
Both the inside and outside of the vesicle are filled with electrolytes, with the dielectric constants ei and eo, and the conduc-
tivities ri and ro, respectively. The bending stiffness, spontaneous curvature, dielectric constant, conductivity and flexoelec-
tric coefficient of the vesicle membrane are denoted by k; c0; em;rm and e11, respectively. The material parameters used in our
calculations are listed in Table 1, in which the values in the Cell column were experimentally measured from cells by Kotnik
and Miklavcic [58] and Gowrishankar et al. [59], while those in the Vesicle column were measured from vesicles by Riske and
Dimova [16].

The axisymmetric space is divided into axisymmetric rectangular quadratic Lagrange elements [57] of size
0:75 lm� 0:75 lm, each of which has four Gauss integration points. We take an optimal value of b ¼ 0:5 lm in Eq. (50),
ensuring that the width of the numerical interface can cover at least one space step. We also compare the results for several
different widths. It is found that if a too small width is chosen (e.g., b ¼ 0:2 lm), some certain places in the interface would



Table 1
Parameters used in the calculation.

Definitions of parameters Cell Vesicle

Cell (or vesicle) radius, R 1� 10�5 m 1:76� 10�5 m
Membrane thickness, d0 5� 10�9 m 5� 10�9 m
Bending stiffness, k 1� 10�19 J 8� 10�19 J
Flexoelectric coefficient, e11 1� 10�10 C=m 0
Conductivity of extracellular medium, ro 1:2Sm�1 1:2� 10�2 Sm�1

Conductivity of intracellular medium, ri 0:3 Sm�1 6� 10�4 Sm�1

Conductivity of cell membrane, rm 3� 10�7 Sm�1 3� 10�7 Sm�1

Dielectric constant intracellular medium, ei 6:4� 10�10 As=Vm 8� 10�11 As=Vm
Dielectric constant of extracellular medium, eo 6:4� 10�10 As=Vm 8� 10�11 As=Vm
Dielectric constant of cell membrane, em 4:4� 10�11 As=Vm 5:5� 10�12 As=Vm
Spontaneous curvature, c0 �2:4� 105 m�1 �1:36� 105 m�1

Diameter, W 6� 10�5 m 1:56� 10�4 m
Height, L 6� 10�5 m 1:56� 10�4 m

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Simulation results of an initially spherical vesicle in the absence of an electric field ðE0 ¼ 0Þwhere the parameters given in the Cell column of Table 1
are used.
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become fuzzy during the deformation of the vesicle; and if one specifies a too large width (e.g., b ¼ 2:0 lm), the original thin
interfacial property of vesicle membrane cannot be externalized. The total number of finite elements is 3200. The discrete
ordinary differential equation system (47), in conjunction with the volume and area constraint conditions (38) and (43),
are solved using the DASPK solver [60], based on the variable-order variable-stepsize backward differentiation method
(BDF). Additionally, a self-adapting iteration step strategy is utilized in the time-step determination in order to improve
the calculation efficiency. Firstly, an initial time step Dt is specified. Then the values for the variables C and / are calculated
at the steps Dt and 0:8Dt, respectively. If the maximum relative error for C and /, err ¼maxð/err;CerrÞ, are within 0.1%, Dt is
taken for the calculation of the next step. Otherwise, the step is decreased to 0:8Dt, and the above procedure is repeated until
the requirement of the accuracy is satisfied. If the relative error is less than 0.05%, the step will be replaced by 1:2Dt. From
our numerical calculation experience, the step Dt may be specified in the range from 0.1 to 100, if the initial step is taken as
40. This adaptive time advancing algorithm ensures the balance of high accuracy and efficiency of the calculation.

5.2. Verification of the calculation algorithm

In the adopted steepest decent approach [55], if the mechanical and electrical energies as well as the osmotic pressure
and surface tension converge to constant values, the simulation is stable and the vesicle system is considered to have
reached an equilibrium configuration. In order to verify the convergence and stability of the present numerical algorithm,
(a) (b)

(c) (d)

(e) (f)

Fig. 4. Simulation results of an initially spherical vesicle under an electric field (E0 ¼ 10:0 kV=m) where no flexoelectric effect has been included, i.e.,
(e11 ¼ 0) and the parameters are given in the Cell column of Table 1.
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we consider three validation cases under conditions: (I) E0 ¼ 0 and e11 ¼ 0; (II) E0 ¼ 10:0 kV=m and e11 ¼ 0; (III)
E0 ¼ 10:0kV=m and e11 ¼ 1� 10�10 C=m, respectively. The data in the Cell column of Table 1 are adopted for the other
parameters.
(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5. Simulation results of an initially spherical vesicle under an electric field ðE0 ¼ 10:0 V=mÞ with flexoelectric effect ðe11 ¼ 1:0� 10�10 C=mÞ, where we
use the parameters given in the Cell column of Table 1.
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The calculation results in Case I (without electric effect) are presented in Fig. 3. Fig. 3(a) shows the equilibrium morphol-
ogy of the vesicle at the iteration step t ¼ 4000. The bending energy Fbm plotted in Fig. 3(b) decreases from 216 eV at t ¼ 0 to
a constant value 165 eV at t ¼ 4000. Fig. 3(c) and (d) verify that the area and volume are almost kept constant during defor-
mation. The osmotic pressure Dp and the surface tension c converge to 0:0057 Pa and �0:032 lN=m, respectively (Fig. 3(e)
and (f)). When we take the special values R ¼ 1:0� 10�5 m, k ¼ 1:0� 10�19 J, and c0 ¼ �2:4� 105 m�1, as given in Table 1,
the following relation is approximately fulfilled:
Fig. 6.
we take
red reg
version
Dpþ 2c
R
þ kc2

0

R
� 2kc0

R2 ¼ 0; ð51Þ
Shape evolution of a vesicle under an increasing electric field E0 (from 0 to 70:0 kV=m) where no flexoelectric effect has been included (e11 ¼ 0). Here
the conductivity coefficients ri ¼ 0:3 Sm�1 and ro ¼ 1:2 Sm�1, and the other parameters are given in the Cell column of Table 1. In the blue and the

ions, we have C ¼ �1 and C ¼ 1, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
of this article.)
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which is consistent with the theoretical prediction of the stable shape for a spherical configuration by Ou-Yang et al. [21].
In Case II, where an electric field is applied but the effect of flexoelectricity is neglected, the calculation results (Fig. 4) are

very similar to those in Fig. 3. Fig. 4(c) and Fig. 5(d) show that the dielectric energy of the vesicle and the dielectric energy of
the electrolytes converge to Fdm ¼ �13:54 eV and Fde ¼ �6:8� 104 eV, respectively.

Fig. 5 plots the simulation results in Case III, where the effect of flexoelectricity has been taken into account. The vesicle
shape in this case (Fig. 5(a)) is significantly different from those in Fig. 3(a) and Fig. 4(a). The vesicle evolves from the initial
spherical shape to a drum-like shape. The lower surface of the final configuration is larger and flatter than the upper surface.
It is also found that the vesicle shifts downwards by a short distance. The flexoelectric energy (Fig. 5(c)) induced by the ap-
plied electric loading approaches Ffm ¼ �4:98 eV, only about 2.5% of the bending energy (Fig. 5(b)). This example demon-
strates that, although the flexoelectric energy constitutes only a small portion of the total energy, it can nevertheless play
a significant role in the morphological transition of cells and vesicles. Moreover, the dielectric energy of the membrane
Fig. 7. Variation of the electric potential field / corresponding to the morphological evolution in Fig. 6 under an increasing electric field E0 from 0 to
70:0 kV=m, where we take e11 ¼ 0;ri ¼ 0:3 Sm�1, and ro ¼ 1:2 Sm�1.
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(Fig. 5(d)), the osmotic pressure (Fig. 5(f)), and the surface tension (Fig. 5(g)) in the stable configuration of Case III are dra-
matically different from those in Cases I and II, but the dielectric energy (Fig. 5(e)) seems to make little difference in the mor-
phology of the vesicle.

We have compared the calculation results under three different finite element meshes with element numbers
60� 100;50� 90, and 80� 160, respectively. The corresponding solutions are in good agreement, demonstrating the size
insensitivity and the robustness of the present algorithm.
Fig. 8. Simulation results based on the experimentally measured parameters for a vesicle under an externally applied electric field [16], which are given in
the Vesicle column of Table 1.

Fig. 9. Shape evolution and the corresponding electric potential field E0 from 10.0 to 50:0 kV=m, where the effect of flexoelectricity has been neglected (i.e.,
e11 ¼ 0). The other parameters adopted are given in the Cell column of Table 1.



Fig. 10. Shape evolution of a vesicle under an increasing electric field E0 from 0 to 14:0 kV=m, where we take the effect of flexoelectric coefficient
e11 ¼ 1:0� 10�10 C=m. The other parameters are given in the Cell column of Table 1. The blue and the red regions have C ¼ �1 and C ¼ 1, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.3. Morphological evolution of vesicles under electric fields

In what follows, we will simulate the morphological evolution of a vesicle under an increasing electric field E0 and exam-
ine the influences of such key parameters as the flexoelectric coefficient e11 of the membrane and the conductivity coeffi-
cients ro and ri of the outer and inner electrolytes. The data in the Cell column of Table 1 are used in our simulations,
except where otherwise stated.
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The evolutions of the phase field C and the electric potential field / under an increasing electric field are shown in Figs. 6
and 7, where the conductivity coefficient of the outer electrolyte is taken to be larger than that of the inner and the mem-
brane flexoelectricity is neglected (i.e., ro > ri and e11 ¼ 0). As E0 rises from 0 to 40 kV=m, the initially spherical vesicle be-
comes oblate, as shown in Fig. 6(a)–(f). Such a shape change is in agreement with the theoretical prediction of Hyuga et al.
[32]. With further increase in E0, the top and bottom parts of the membrane gradually flatten, rendering the vesicle into a
drum shape (Fig. 6(g) and Fig. 7(h)). This interesting transformation was recently observed in experiments by Riske and Dim-
ova [16] but has not been elucidated theoretically. When E0 reaches 70:0 kV=m, the phase field gap becomes nonhomogene-
ous, indicating a nonuniform variation of the thickness of the vesicle. At points P1 and P2, the vesicle becomes thinner and
thinner due to strain concentration, while at point P3, the thickness increases gradually, as shown in Fig. 6(h) and Fig. 7(g).
Therefore, a sufficiently high electric field may induce electroporation or rupture in the vesicle at positions P1 and P2.
Fig. 11. Variation of the electric potential field / corresponding to the morphological evolution in Fig. 10 under an increasing electric field E0.
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To further verify the sphere-to-drum shape transition shown in Fig. 6(a)–(g), we repeated the simulation using the
parameter values measured experimentally from vesicles under an electric field by Riske and Dimova [16], which are listed
in the Vesicle column of Table 1. The externally applied electric field E0 changes from 0 to 200 kV=m. The obtained results for
the phase field and the electric potential field are displayed in Fig. 8. Again, we observed the transition of the vesicle from a
sphere shape to a drum, in consistency with the recent experimental results of Riske and Dimova [16].

As experimentally observed by Riske and Dimova [16], the drum-like shape configuration is unstable and short-lived un-
der a high electric field. Our previous study [19] showed that the electric field can become singular at some particular posi-
tions. The instability of this shape might be attributed to such reasons as electroporation associated with the singularity of
the electrical field and the associated localization of deformation at these positions. During electroporation, the volume and
surface area of the vesicle may change due to mass transport, and the vesicle eventually reverts back to an oblate shape in
the electric field. The detailed considerations about the electroporation and the post-instability evolution are beyond the
scope of the present study.

5.4. Effects of the conductivities of the inner and outer electrolytes

The conductivity rm of the vesicle is usually much smaller than those of the electrolytes, which we have taken to be
ri ¼ 0:3 Sm�1 and ri ¼ 1:2 Sm�1 in Fig. 2. To further examine the effects of the conductivity of the inner and outer electro-
lytes, we exchange the values of their conductivity coefficients, that is, ri ¼ 1:2 Sm�1 and ri ¼ 0:3 Sm�1. Fig. 9 shows the
corresponding results of the phase field and the electric potential under an increasing electric field E0. It is seen from
Fig. 9(a) and (b) that the vesicle deforms from a sphere to a prolate as E0 rises from 10:0 kV=m to 20:0 kV=m, in consistency
with the theoretical prediction of Hyuga et al. [32] under the same condition. When the electric field E0 increases to
E0 ¼ 50:0 kV=m, a long cylinder-like vesicle morphology is obtained (Fig. 9(c)). This solution is in accord with the experimen-
tal observations of Riske and Dimova [16]. Therefore, it may be concluded that the conductive properties of the inner and
outer electrolytes play a crucial role in the morphology evolution of vesicles under electric loading.

5.5. Effects of flexoelectricity

As already mentioned above, the flexoelectric effect can have a significant influence on the morphology of vesicles. To
further explore this issue, we simulate the morphological evolution of a vesicle with a flexoelectric coefficient of
Fig. 12. Comparison of the stable morphological evolution and the corresponding electric potential of a vesicle under three representative flexoelectric
coefficients: (a) e11 ¼ 0, (b) e11 ¼ 2:5� 10�11 C=m, (c) e11 ¼ 1:0� 10�10 C=m and electric field E0 ¼ 13:0 kV=m.
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e11 ¼ 1:0� 10�10 C=m. The corresponding distributions of the phase field and the electric field are shown in Figs. 10 and 11
under several representative values of the applied electric field E0. It is seen that all stable shapes of the vesicle under dif-
ferent values of E0 are asymmetric in the direction of the electric field. As E0 rises in the range of 0—5:0 kV=m, the bottom
part of the vesicle gradually flattens and the deformed vesicle moves downward to a new equilibrium position (Fig. 10(a)–(c)
or Fig. 11(a)–(b)). For E0 ¼ 5:0 kV=m, the equilibrium position of the vesicle, which has a semi-ellipsoidal shape, is near the
bottom of the simulation box.

In the range of 5:0 kV=m < E0 6 14:0 kV=m, the top part of the vesicle also becomes flatter and flatter, displaying an inter-
esting transition from a semi-ellipsoid to a drum and, finally, to an oblate. The corresponding equilibrium position moves
upward to the top of the simulation box (Fig. 10(c)–(h) or Fig. 11(b)–(g)).

We also compare the results for three representative flexoelectric coefficients, e11 ¼ 0; e11 ¼ 2:5� 10�11 C=m, and
e11 ¼ 1� 10�10 C=m, as shown in Fig. 12. Evidently, the stable morphology of a vesicle is sensitive to its flexoelectric coeffi-
cient. These results show that the flexoelectric effect can not only induce significant variations and asymmetry in the mor-
phology of vesicles, but can also change the equilibrium position of the vesicle in the electric field. This suggests possible
utilization of the flexoelectric effects in manipulating and controlling of cells or vesicles.

6. Conclusions

Based on a coupled mechanical–electrical liquid crystal model, we have developed a finite element-based phase field
method to investigate the morphological evolution of a vesicle in an electric field. The influences of such factors as elastic
bending, flexoelectricity, and dielectricity have been taken into account. The vesicle shape equation and the electric field
equation are formulated in terms of the phase field function and the electric potential. After discretization, these equations
are solved by the finite element method. To demonstrate the validity and efficiency of this approach, we have considered the
evolution of an initially spherical vesicle under an increasing electric field. The obtained results are consistent with previous
theoretical predictions for several special configurations by Ou-Yang et al. [21] and Hyuga et al. [32] as well as recent exper-
imental observations by Riske and Dimova [16]. We showed that the applied electric field leads to an interesting shape tran-
sition of vesicles and that the membrane flexoelectricity can play a dominant role in this process. This finite element based
phase field method can efficiently handle the strong nonlinearity and large deformation in the present problem. The simu-
lation results indicate that the flexoelectric effects could potentially be used in manipulation of cells and vesicles and con-
trolling their morphology and migration.
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